To show that triangle FGH (δfgh) is congruent to triangle JKL (δjkl) using the <a href="https://www.wikiwhat.page/kavramlar/SAS%20(Side-Angle-Side)%20Congruence">SAS (Side-Angle-Side) Congruence</a> postulate, you need to demonstrate the following:
Side Congruence: One side of triangle FGH must be congruent to a corresponding side of triangle JKL. For example, FG ≅ JK.
Angle Congruence: The angle included between the two sides you're considering in each triangle must be congruent. For instance, if FG ≅ JK, and GH ≅ KL, then ∠G must be congruent to ∠K (∠G ≅ ∠K). The <a href="https://www.wikiwhat.page/kavramlar/Included%20Angle">included angle</a> is the angle formed by the two congruent sides.
Side Congruence: The other side forming the included angle in triangle FGH must be congruent to the corresponding side in triangle JKL. Building on the previous example, GH ≅ KL.
Therefore, to prove δfgh ≅ δjkl by SAS, you need to show that:
If these three conditions are met, then by the SAS congruence postulate, the two triangles are congruent.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page